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I. INTRODUCTION

Let IR+x = {x E IR t .x> O} denote the open positive real half-line.
Throughout this paper let an arbitrary real number ho > 1 (the initial step
width) and the function

fo : IR+x :3 X "* (log x)jlog ho E IR (1)

be fixed. In a recent paper Newman and Schoenberg [8] have investigated
the convergence behavior of the cardinal logarithmic splines (Sm)m>l on
IR+x that interpolate the function fo at the geometric sequence (hOn)nEZ
of nodes; for the exact definitions of these notions see Section 2. The technique
used by these autors is based on a rather tricky exploitation of a Fourier series
expansion. The purpose of the present article however is to study the con
vergence properties of the sequence (Sm)m>l by means of a method that is
of quite a different nature. This approach is adapted to the limiting form of
the sequence (Sm)m>l as the degree m tends to infinity and relies on an
appropriate second-order refinement of Karamata's Abel-Tauber theorem
for the one sided Laplace transform.

2. CARDINAL LOGARITHMIC SPLINES

Let mE !\jx be an arbitrary natural number and Sm E <cm- 1(IR+X) a real
valued function such that the restriction of 8m to every compact interval
[hon, h~+l] (n E Z) of the half-line IR+x is a polynomial function of degree ~m.

Following Newman and Schoenberg [8] the function 8m is called a cardinal
logarithmic spline of degree m if it satisfies the following two conditions:
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(i) 8m interpolates the function fo at the geometric sequence (hOn)nci!L
of nodes, i.e., 8m satisfies

(IP)

for each number n E 7L ("interpolation property").

(ii) 8m satisfies the inhomogeneous linear geometric difference equation
of the first order

(DE)

("difference equation"; see Meschkowski [7, Kap. XV]).

The conditions (IP), (DE) are sufficient to determine the function 8m

uniquely. Moreover, the cardinal logarithmic spline of degree m ~ 1 admits
the explicit representation

Sm(X) = L «1 - hony;. - (1 - xhon)~)
nEil

(2)

(3)

where for any function f: IR+x -- IR the symbol f+ = sup{f, O} stands for
the positive part off We obtain by (2) the relation

1· 8 ( ) - l' "( -h'r!0(m)+n) _ _Xh~fo(m)+n)1m m X - 1m L. e e ,
m....:HIJ m-H.O nel

the limit being uniform for all points x E IR+X. For each number y E IR let
[ y] = sup{n E 7L t .n ~ y} be the greatest integer ~y. Consider the saltus
function

g: IR+X 3 t ~ [fit)] + 1 E IR. (4)

Observe that g is nondecreasing and continuous on the right and that it
satisfies the geometric difference equation (DE)

g(tho) - g(t) = 1 (t E IR+X). (5)

It follows that there exists a unique positive Radon measure /Lg on IR+x such
that

/Lila, b]) = g(b) - g(a) (6)

holds for every half-open interval la, b] C IR+x, the Lebesgue-Stieltjes measure
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on IR+x defined by g. Then, for any number € > 0 the Laplace-Stieltjes
integrals

(7)

exist and we obtain the relation

(8)

It follows from (3), definitions (4), (6), and from (8) that the approximation
property of the cardinal logarithmic splines (Sm)m)l on the helf-line IR+x holds
at x E IR+x, i.e.,

lim Sm(x) = j~(x)
m->oo

if and only if the relation

(APx)

is satisfied.

(9)

3. ApPLICATION OF THE ABEL-TAUBER THEOREM

Clearly, (IP) implies (APx) for any point x E IR+x that belongs to the
sequence (ho

n )nE7L of interpolation nodes. To prove the converse of this
assertion, i.e., to prove that (APx) holds only if x E IR+x reveals to be one of
the nodes (ho

n )nE7L we shall exploit the limiting relation (9).
Let any (linear) transformation between function spaces be given. It is

well known that each result that provides information concerning the asymp
otic behavior of the transformed function by means of the asymptotic
behavior of the original function is called an Abelian theorem. Conversely,
any theorem that gives information concerning the asymptotic behavior
by means of a conclusion in the opposite direction (from the transformed
function to the given one) is called a Tauberian theorem. See, for instance,
Beekmann and Zeller [10] and in particular, for the case of the Laplace
transform, Doetsch [4, Part V]. For our purposes the following Abel-Tauber
theorem essentially due to de Haan [1-3] is of importance. It represents a
suitable refinement of Karamata's theorem for one-sided Laplace transforms
(Hardy [6, Chap. VIT]; Widder [9, Chap. 8]).
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THEOREM 1. Let x E IR+x be any fixed point. The limiting relation (9)
holds if and only if the condition

I
. g(tX) - get)
1m - rex)

1->0+ g(tho) - get) - JO

is satisfied by the saltus function g.

Proof (Sketch). For each number e > 0 define the mapping

(10)

g.:IR+X3t-0

- get) - gee)

if t E ]0, e[,

if tE[e,+oo[.

Then (g.).>o is a family of nondecreasing saltus functions ~O on IR+x that
are continuous on the right and satisfy g. (0+) = 0. Furthermore, we have

(e > 0). (12)

In view of the identity

I· g(tx) - get) I' (I' g.(tx) - g.(t))1m = 1m 1m ~~-::=..::..o,,",,
1->0+ g(tho) - get) 1->0+ .->0+ g.(tho) - g.(t)

(13)

an application of Theorem 1.4.3 in de Haan's tract [I] shows that the con
dition (10) is satisfied at the point x E IR+x if and only if the functions

I ItG.: lR+x:3 t - g.(t) - - g.(s) ds E IR
t 0

(e > 0) (14)

have the property limt-+o+(lim.~o+G.(tx) - G.(t)) = 0, i.e., if and only if
the family (G.).>o is in the limit e ~ 0+ "slowly varying" at zero on the
right. Analogous arguments as used in [3] and [1]-we do not repeat all of
the details-show the equivalence of (10) and the relation

(x E IR+X). (15)

In view of (12) the assertion follows.
Let us switch back to our problem. In view of (5), (4), and (1) we obtain

the equivalence of (10) with the identity

lim ([Jo(t) + fo(x)] - [Jo(t)]) = fo(x),
1->0+

(16)

i.e., with [fo(x)] = fix) for any x E IR+x. Thus, Theorem 1 supra implies
immediately the following (unexpected) convergence theorem due to Newman
and Schoenberg [8].
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THEOREM 2. The sequence (Sm)m>l of cardinal logarithmic splines on IR+x

satisfies (APx) at the point x E IR+x if and only if x belongs to the sequence
(hon)nE"l. of interpolation nodes.

For the limiting behavior of cardinal spline functions on IR that satisfy
the homogeneous linear difference equation of the first order Sex + 1) 
hS(x) = 0, X E IR, the reader is referred to the article by Greville et al. [5]
and the literature cited therein.
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